A. Create an Amazon API Gateway REST API that uses Lambda proxy integration to pass requests to an AWS Lambda function. Migrate the core processing code to a Lambda function and write a wrapper class that provides a handler method that converts the proxy events to the internal application data model and invokes the processing module.
B. Create an Amazon API Gateway REST API that uses a service proxy to put items in an Amazon SQS queue. Extract the core processing code from the existing application and update it to pull items from Amazon SQS instead of an in-memory queue. Deploy the new processing application to smaller EC2 instances within an Auto Scaling group that scales dynamically based on the approximate number of messages in the Amazon SQS queue.
C. Modify the application to use Amazon DynamoDB instead of Amazon RDS. Configure Auto Scaling for the DynamoDB table. Deploy the application within an Auto Scaling group with a scaling policy based on CPU utilization. Back the in-memory queue with a memory-mapped file to an instance store volume and periodically write that file to Amazon S3.
D. Update the application to use a Redis task queue instead of the in-memory queue. Build a Docker container image for the application. Create an Amazon ECS task definition that includes the application container and a separate container to host Redis. Deploy the new task definition as an ECS service using AWS Fargate, and enable Auto Scaling.
- Trademarks, certification & product names are used for reference only and belong to Amazon.
Join the Discussion
You must be logged in to post a comment.