A. Enable Amazon SageMaker Model Monitor data capture on the model endpoint. Create a monitoring baseline on the training dataset. Schedule monitoring jobs. Use Amazon CloudWatch to alert the data scientists when the numerical distance of regional customer data fails the baseline drift check. Reevaluate the training set with the larger data source and retrain the model.
B. Enable Amazon SageMaker Debugger on the model endpoint. Create a custom rule to measure the variance from the baseline training dataset. Use Amazon CloudWatch to alert the data scientists when the rule is invoked. Reevaluate the training set with the larger data source and retrain the model.
C. Capture all customer calls routed to the specialist service team in Amazon S3. Schedule a monitoring job to capture all the true positives and true negatives, correlate them to the training dataset, and calculate the accuracy. Use Amazon CloudWatch to alert the data scientists when the accuracy decreases. Reevaluate the training set with the additional data from the specialist service team and retrain the model.
D. Enable Amazon CloudWatch on the model endpoint. Capture metrics using Amazon CloudWatch Logs and send them to Amazon S3. Analyze the monitored results against the training data baseline. When the variance from the baseline exceeds the regional customer variance, reevaluate the training set and retrain the model.

- Awsexamhub website is not related to, affiliated with, endorsed or authorized by Amazon.
- Trademarks, certification & product names are used for reference only and belong to Amazon.