A. Launch multiple medium-sized instances in a distributed SageMaker Processing job. Use the prebuilt Docker images for Apache Spark to query and plot the relevant data and to export the relevant data from Amazon Redshift to Amazon S3.
B. Launch multiple medium-sized notebook instances with a PySpark kernel in distributed mode. Download the data from Amazon Redshift to the notebook cluster. Query and plot the relevant data. Export the relevant data from the notebook cluster to Amazon S3.
C. Use AWS Secrets Manager to store the Amazon Redshift credentials. From a SageMaker Studio notebook, use the stored credentials to connect to Amazon Redshift with a Python adapter. Use the Python client to query the relevant data and to export the relevant data from Amazon Redshift to Amazon S3.
D. Use AWS Secrets Manager to store the Amazon Redshift credentials. Launch a SageMaker extra-large notebook instance with block storage that is slightly larger than 10 TB. Use the stored credentials to connect to Amazon Redshift with a Python adapter. Download, query, and plot the relevant data. Export the relevant data from the local notebook drive to Amazon S3.
E. Use SageMaker Data Wrangler to query and plot the relevant data and to export the relevant data from Amazon Redshift to Amazon S3.

- Awsexamhub website is not related to, affiliated with, endorsed or authorized by Amazon.
- Trademarks, certification & product names are used for reference only and belong to Amazon.