A. Load the data into an Amazon S3 bucket by using Amazon Kinesis Data Firehose. Use a SageMaker Processing job to aggregate the data and to load the results into SageMaker Feature Store as an online feature group.
B. Write the data directly from the data stream into SageMaker Feature Store as an online feature group. Calculate the rolling averages in place within SageMaker Feature Store by using the SageMaker GetRecord API operation.
C. Consume the data stream by using an Amazon Kinesis Data Analytics SQL application that calculates the rolling averages. Generate a result stream. Consume the result stream by using a custom AWS Lambda function that publishes the results to SageMaker Feature Store as an online feature group.
D. Load the data into an Amazon S3 bucket by using Amazon Kinesis Data Firehose. Use a SageMaker Processing job to load the data into SageMaker Feature Store as an offline feature group. Compute the rolling averages at query time.
- Trademarks, certification & product names are used for reference only and belong to Amazon.
Join the Discussion
You must be logged in to post a comment.