A. A histogram showing whether the most important input feature is Gaussian.
B. A scatter plot with points colored by target variable that uses t-Distributed Stochastic Neighbor Embedding (t-SNE) to visualize the large number of input variables in an easier-to-read dimension.
C. A scatter plot showing the performance of the objective metric over each training iteration.
D. A scatter plot showing the correlation between maximum tree depth and the objective metric.
- Awsexamhub website is not related to, affiliated with, endorsed or authorized by Amazon.
- Trademarks, certification & product names are used for reference only and belong to Amazon.
- Trademarks, certification & product names are used for reference only and belong to Amazon.
Join the Discussion
You must be logged in to post a comment.