A. Use an AWS Glue job to transform the data from JSON to Apache Parquet. Use AWS Glue crawlers to discover the schema and build the AWS Glue Data Catalog. Use Amazon Athena to create a table with a subset of columns. Use Amazon QuickSight to visualize the data and then use Amazon QuickSight machine learning-powered anomaly detection. Most Voted
B. Use Kinesis Data Firehose to detect anomalies on a data stream from Kinesis by running SQL queries, which compute an anomaly score for all calls and store the output in Amazon RDS. Use Amazon Athena to build a dataset and Amazon QuickSight to visualize the results.
C. Use an AWS Glue job to transform the data from JSON to Apache Parquet. Use AWS Glue crawlers to discover the schema and build the AWS Glue Data Catalog. Use Amazon SageMaker to build an anomaly detection model that can detect fraudulent calls by ingesting data from Amazon S3.
D. Use Kinesis Data Analytics to detect anomalies on a data stream from Kinesis by running SQL queries, which compute an anomaly score for all calls. Connect Amazon QuickSight to Kinesis Data Analytics to visualize the anomaly scores.

- Awsexamhub website is not related to, affiliated with, endorsed or authorized by Amazon.
- Trademarks, certification & product names are used for reference only and belong to Amazon.